NGC 7635: The Bubble Nebula


Blown by the wind from a massive star, this interstellar apparition has a surprisingly familiar shape. Cataloged as NGC 7635, it is also known simply as The Bubble Nebula. Although it looks delicate, the 7 light-year diameter bubble offers evidence of violent processes at work. Above and left of the Bubble’s center is a hot, O-type star, several hundred thousand times more luminous and some 45 times more massive than the Sun. A fierce stellar wind and intense radiation from that star has blasted out the structure of glowing gas against denser material in a surrounding molecular cloud. The intriguing Bubble Nebula and associated cloud complex lie a mere 7,100 light-years away toward the boastful constellation Cassiopeia. This sharp, tantalizing view of the cosmic bubble is a composite of Hubble Space Telescope image data from 2016, reprocessed to present the nebula’s intense narrowband emission in an approximate true color scheme.

from NASA https://ift.tt/2HBnKIw
via IFTTT

M57: The Ring Nebula


Except for the rings of Saturn, the Ring Nebula (M57) is probably the most famous celestial band. Its classic appearance is understood to be due to our own perspective, though. The recent mapping of the expanding nebula’s 3-D structure, based in part on this clear Hubble image,indicates that the nebula is a relatively dense, donut-like ring wrapped around the middle of a (American) football-shaped cloud of glowing gas. The view from planet Earth looks down the long axis of the football, face-on to the ring. Of course, in this well-studied example of a planetary nebula, the glowing material does not come from planets. Instead, the gaseous shroud represents outer layers expelled from the dying, once sun-like star, now a tiny pinprick of light seen at the nebula’s center. Intense ultraviolet light from the hot central star ionizes atoms in the gas. The Ring Nebula is about one light-year across and 2,000 light-years away.

from NASA https://ift.tt/2HHgEzK
via IFTTT

Flyover of Jupiters North Pole in Infrared


What would it look like to fly over the North Pole of Jupiter? A fictional animation made from real images and data captured by NASA’s Juno spacecraft shows an answer. Since the pole is presently in shadow, the video uses infrared light emitted by Jupiter — specifically an infrared color where the hottest features glows the brightest. As the animation starts, Juno zooms in on the enormous world. Soon, one of the eight cyclones orbiting the North Pole is featured. One by one, all eight cyclones circling the pole are inspected, each the size of an entire continent on Earth, and each containing bumpy and fragmented spiral walls. The virtual trip ends with a zoom out. Studying Jovian cyclones helps humanity to better understand dangerous storm systems that occur here on Earth. Juno has recently concluded another close pass by JupiterPerijove 12 — and seems healthy enough to complete several more of the two-month orbits.

from NASA https://ift.tt/2EM34s1
via IFTTT

Space Shuttle Rising


What’s that rising from the clouds? The space shuttle. Sometimes, if you look out the window of an airplane at just the right time and place, you see something unusual — in this case a space shuttle launching to orbit. The featured image of Endeavour’s final launch in 2011 May was captured from a NASA shuttle training aircraft. Taken well above the clouds, the image can be matched with similar images of the same shuttle plume taken below the clouds. Hot glowing gasses expelled by the engines are visible near the rising shuttle, as well as a long smoke plume. A shadow of the plume appears on the cloud deck, indicating the direction of the Sun. The US Space Shuttle program concluded in 2011, and Endeavour can now be visited at the California Science Center. Planned for tomorrow, however, is a different launch — that of the Transiting Exoplanet Survey Satellite (TESS) aboard a SpaceX Falcon 9 rocket.

from NASA https://ift.tt/2HzKMxc
via IFTTT

Martian Chiaroscuro


Deep shadows create dramatic contrasts between light and dark in this high-resolution close-up of the martian surface. Recorded on January 24, 2014 by the HiRISE camera onboard the Mars Reconnaissance Orbiter, the scene spans about 1.5 kilometers. From 250 kilometers above the Red Planet the camera is looking down at a sand dune field in a southern highlands crater. Captured when the Sun was about 5 degrees above the local horizon, only the dune crests were caught in full sunlight. A long, cold winter is coming to the southern hemisphere and bright ridges of seasonal frost line the martian dunes.

from NASA https://ift.tt/2JJcIPN
via IFTTT

Facing NGC 3344


From our vantage point in the Milky Way Galaxy, we see NGC 3344 face-on. Nearly 40,000 light-years across, the big, beautiful spiral galaxy is located just 20 million light-years away in the constellation of Leo Minor. This multi-color Hubble Space Telescope close-up of NGC 3344 includes remarkable details from near infrared to ultraviolet wavelengths. The frame extends some 15,000 light-years across the spiral’s central regions. From the core outward, the galaxy’s colors change from the yellowish light of old stars in the center to young blue star clusters and reddish star forming regions along the loose, fragmented spiral arms. Of course, the bright stars with a spiky appearance are in front of NGC 3344 and lie well within our own Milky Way.

from NASA https://ift.tt/2qvIXce
via IFTTT

M22 and the Wanderers


Wandering through the constellation Sagittarius, bright planets Mars and Saturn appeared together in early morning skies over the last weeks. They are captured in this 3 degree wide field-of-view from March 31 in a close celestial triangle with large globular star cluster Messier 22. Of course M22 (bottom left) is about 10,000 light-years distant, a massive ball of over 100,000 stars much older than our Sun. Pale yellow and shining by reflected sunlight, Saturn (on top) is about 82 light-minutes away. Look carefully and you can spot large moon Titan as a pinpoint of light at about the 5 o’clock position in the glare of Saturn’s overexposed disk. Slightly brighter and redder Mars is 9 light-minutes distant. While both planets are moving on toward upcoming oppositions, by July Mars will become much brighter still, with good telescopic views near its 2018 opposition a mere 3.2 light-minutes from planet Earth.

from NASA https://ift.tt/2qrEM27
via IFTTT