M45: The Pleiades Star Cluster

Have you ever seen the Pleiades star cluster? Even if you have, you probably have never seen it as dusty as this. Perhaps the most famous star cluster on the sky, the bright stars of the Pleiades can be seen without binoculars even from the heart of a light-polluted city. With a long exposure from a dark location, though, the dust cloud surrounding the Pleiades star cluster becomes very evident. The featured image was a long duration exposure taken last month from Namibia and covers a sky area many times the size of the full moon. Also known as the Seven Sisters and M45, the Pleiades lies about 400 light years away toward the constellation of the Bull (Taurus). A common legend with a modern twist is that one of the brighter stars faded since the cluster was named, leaving only six stars visible to the unaided eye. The actual number of visible Pleiades stars, however, may be more or less than seven, depending on the darkness of the surrounding sky and the clarity of the observer’s eyesight.

from NASA http://ift.tt/2el3RF8


Cylindrical Mountains on Venus

What could cause a huge cylindrical mountain to rise from the surface of Venus? Such features that occur on Venus are known as coronas. Pictured here in the foreground is 500-kilometer wide Atete Corona found in a region of Venus known as the Galindo. The featured image was created by combining multiple radar maps of the region to form a computer-generated three-dimensional perspective. The series of dark rectangles that cross the image from top to bottom were created by the imaging procedure and are not real. The origin of massive coronas remains a topic of research although speculation holds they result from volcanism. Studying Venusian coronas help scientists better understand the inner structure of both Venus and Earth.

from NASA http://ift.tt/2e9hMOr

Herschel s Orion

This dramatic image peers within M42, the Orion Nebula, the closest large star-forming region. Using data at infrared wavelengths from the Herschel Space Observatory, the false-color composite explores the natal cosmic cloud a mere 1,500 light-years distant. Cold, dense filaments of dust that would otherwise be dark at visible wavelengths are shown in reddish hues. Light-years long, the filaments weave together bright spots that correspond to regions of collapsing protostars. The brightest bluish area near the top of the frame is warmer dust heated by the hot Trapezium cluster stars that also power the nebula’s visible glow. Herschel data has recently indicated ultraviolet starlight from the hot newborn stars likely contributes to the creation of carbon-hydrogen molecules, basic building blocks of life. This Herschel image spans about 3 degrees on the sky. That’s about 80 light-years at the distance of the Orion Nebula.

from NASA http://ift.tt/2efmMkj

Galaxies from the Altiplano

The central bulge of our Milky Way Galaxy rises over the northern Chilean Atacama altiplano in this postcard from planet Earth. At an altitude of 4500 meters, the strange beauty of the desolate landscape could almost belong to another world though. Brownish red and yellow tinted sulfuric patches lie along the whitish salt flat beaches of the Salar de Aguas Calientes region. In the distance along the Argentina border is the stratovolcano Lastarria, its peak at 5700 meters (19,000 feet). In the clear, dark sky above, stars, nebulae, and cosmic dust clouds in the Milky Way echo the colors of the altiplano at night. Extending the view across extragalactic space, the Large and Small Magellanic Clouds, satellite galaxies of the Milky Way, shine near the horizon through a faint greenish airglow.

from NASA http://ift.tt/2dP2QJ4

Penumbral Lunar Eclipse

Does this Moon look a little different to you? Although shown in spectacular detail, the full face of Earth’s most familiar satellite appears slightly darker than usual, in particular on the upper left, because it is undergoing a penumbral lunar eclipse. The image was captured in Hong Kong, China, on September 16 when the Moon crossed through part of Earth’s shadow — but not the darkest where the Earth shades the entire Sun. A lunar eclipse can only occur during a full moon, and many know this particular full moon as the Harvest moon for its proximity to northern harvests. The next full moon will occur this coming Sunday. Some cultures refer to it as a Leaf Falling Moon, named for its proximity to northern autumn. The second full moon of the same month (“moonth”) is sometimes called a Blue moon; meanwhile, this month features a rare second new moon, an event known to some as a Black moon.

from NASA http://ift.tt/2e14PWe

The Cygnus Wall of Star Formation

Sometimes, stars form in walls — bright walls of interstellar gas. In this vivid skyscape, stars are forming in the W-shaped ridge of emission known as the Cygnus Wall. Part of a larger emission nebula with a distinctive outline popularly called The North America Nebula, the cosmic ridge spans about 20 light-years. Constructed using narrowband data to highlight the telltale reddish glow from ionized hydrogen atoms recombining with electrons, the image mosaic follows an ionization front with fine details of dark, dusty forms in silhouette. Sculpted by energetic radiation from the region’s young, hot, massive stars, the dark shapes inhabiting the view are clouds of cool gas and dust with stars likely forming within. The North America Nebula itself, NGC 7000, is about 1,500 light-years away.

from NASA http://ift.tt/2d4Liaw

The Hydrogen Clouds of M33

Gorgeous spiral galaxy M33 seems to have more than its fair share of glowing hydrogen gas. A prominent member of the local group of galaxies, M33 is also known as the Triangulum Galaxy and lies about 3 million light-years distant. The galaxy’s inner 30,000 light-years or so are shown in this telescopic portrait that enhances its reddish ionized hydrogen clouds or HII regions. Sprawling along loose spiral arms that wind toward the core, M33’s giant HII regions are some of the largest known stellar nurseries, sites of the formation of short-lived but very massive stars. Intense ultraviolet radiation from the luminous, massive stars ionizes the surrounding hydrogen gas and ultimately produces the characteristic red glow. To enhance this image, broadband data was used to produce a color view of the galaxy and combined with narrowband data recorded through a hydrogen-alpha filter. That filter transmits the light of the strongest visible hydrogen emission line.

from NASA http://ift.tt/2d8nO2o