3D Ahuna Mons


Get out your red/blue glasses and gaze across Ceres at mysterious mountain Ahuna Mons. Shown in a 3D anaglyph perspective view, the mosaicked image data was captured in December of 2015, taken from the Dawn spacecraft’s low-altitude mapping orbit about 385 kilometers above the surface of the dwarf planet. A remarkable dome-shaped feature on Ceres, with steep, smooth sides Ahuna Mons is about 20 kilometers (12 miles) in diameter at its base, rising on average 4 kilometers to a flattened summit. Similar in size to mountains found on planet Earth, no other Cerean surface feature is so tall and well-defined. It is not known what process shaped the lonely Ahuna Mons, or if the bright material streaking its steepest side is the same material responsible for Ceres’ famous bright spots.

from NASA http://ift.tt/1Mtn6oM
via IFTTT

The W in Cassiopeia


A familiar, zigzag, W pattern in northern constellation Cassiopeia is traced by five bright stars in this colorful and broad mosaic. Stretching about 15 degrees across rich starfields, the celestial scene includes dark clouds, bright nebulae, and star clusters along the Milky Way. In yellow-orange hues Cassiopeia’s alpha star Shedar is a standout though. The yellowish giant star is cooler than the Sun, over 40 times the solar diameter, and so luminous it shines brightly in Earth’s night from 230 light-years away. A massive, rapidly rotating star at the center of the W, bright Gamma Cas is about 550 light-years distant. Bluish Gamma Cas is much hotter than the Sun. Its intense, invisible ultraviolet radiation ionizes hydrogen atoms in nearby interstellar clouds to produce visible red H-alpha emission as the atoms recombine with electrons. Of course, night skygazers in the Alpha Centauri star system would also see the recognizable outline traced by Cassiopeia’s bright stars. But from their perspective a mere 4.3 light-years away they would see our Sun as a sixth bright star in Cassiopeia, extending the zigzag pattern just beyond the left edge of this frame.

from NASA http://ift.tt/1VjfPz3
via IFTTT

Close Comet and Large Magellanic Cloud


Sporting a surprisingly bright, lovely green coma Comet 252P/Linear poses next to the Large Magellanic Cloud in this southern skyscape. The stack of telephoto exposures was captured on March 16 from Penwortham, South Australia. Recognized as a Jupiter family periodic comet, 252P/Linear will come close to our fair planet on March 21, passing a mere 5.3 million kilometers away. That’s about 14 times the Earth-Moon distance. In fact, it is one of two comets that will make remarkably close approaches in the next few days as a much fainter Comet Pan-STARRS (P/2016 BA14) comes within 3.5 million kilometers (9 times the Earth-Moon distance) on March 22. The two have extremely similar orbits, suggesting they may have originally been part of the same comet. Sweeping quickly across the sky because of their proximity to Earth, both comets will soon move into northern skies.

from NASA http://ift.tt/1WsRHZf
via IFTTT

A Phoenix Aurora over Iceland


All of the other aurora watchers had gone home. By 3:30 am in Iceland, on a quiet night last September, much of that night’s auroras had died down. Suddenly though, a new burst of particles streamed down from space, lighting up the Earth’s atmosphere once again. This time, unexpectedly, pareidoliacally, they created an amazing shape reminiscent of a giant phoenix. With camera equipment at the ready, two quick sky images were taken, followed immediately by a third of the land. The mountain in the background is Helgafell, while the small foreground river is called Kaldá, both located about 30 kilometers north of Iceland’s capital Reykjavik. Seasoned skywatchers will note that just above the mountain, toward the left, is the constellation of Orion, while the Pleiades star cluster is also visible just above the frame center. The new aurora lasted only a minute and would be gone forever — possibly dismissed as an embellished aberration — were it not captured in the featured, digitally-composed, image mosaic.

from NASA http://ift.tt/254533W
via IFTTT

Dark Nebulas across Taurus


Sometimes even the dark dust of interstellar space has a serene beauty. One such place occurs toward the constellation of Taurus. The filaments featured here can be found on the sky between the Pleiades star cluster and the California Nebula. This dust is not known not for its bright glow but for its absorption and opaqueness. Several bright stars are visible with their blue light seen reflecting off the brown dust. Other stars appear unusually red as their light barely peaks through a column of dark dust, with red the color that remains after the blue is scattered away. Yet other stars are behind dust pillars so thick they are not visible here. Although appearing serene, the scene is actually an ongoing loop of tumult and rebirth. This is because massive enough knots of gas and dust will gravitationally collapse to form new stars — stars that both create new dust in their atmospheres and destroy old dust with their energetic light and winds.

from NASA http://ift.tt/1XpZlDN
via IFTTT

Neon Saturn


If seen in the right light, Saturn glows like a neon sign. Although Saturn has comparatively little of the element neon, a composite image false-colored in three bands of infrared light highlights features of the giant ringed planet like a glowing sign. At the most blue band of the infrared light featured, false-colored blue in the above image, Saturn itself appears dark but Saturn’s thin rings brightly reflect light from our Sun. Conversely, Saturn’s B ring is so thick that little reflected light makes it through, creating a dark band between Saturn’s A and C rings. At the most red band of the infrared, false-colored red above, Saturn emits a surprisingly detailed thermal glow, indicating planet-wide bands, huge hurricane-like storms, and a strange hexagon-shaped cloud system around the North Pole. In the middle infrared band, false-colored green, the sunlit side of Saturn’s atmosphere reflects brightly. The above image was obtained in 2007 by the robotic Cassini spacecraft orbiting about 1.6 million kilometers out from Saturn.

from NASA http://ift.tt/1pgRg9s
via IFTTT

The Flash Spectrum of the Sun


In a flash, the visible spectrum of the Sun changed from absorption to emission on March 9 during the total solar eclipse. That fleeting moment, at the beginning the total eclipse phase, is captured by telephoto lens and diffraction grating in this image from clearing skies over Ternate, Indonesia. At left, the overwhelming light from the Sun is just blocked by the lunar disk. The normally dominant absorption spectrum of the solar photosphere is hidden. What remains, spread by the diffraction grating into the spectrum of colors to the right of the eclipsed Sun, are individual eclipse images. The images appear at each wavelength of light emitted by atoms along the thin visible arc of the solar chromosphere and in an enormous prominence extending beyond the Sun’s upper limb. The brightest images, or strongest chromospheric emission lines, are due to Hydrogen atoms that produce the red hydrogen alpha emission at the far right and blue hydrogen beta emission to the left. In between, the bright yellow emission image is caused by atoms of Helium, an element only first discovered in the flash spectrum of the Sun.

from NASA http://ift.tt/1pma33F
via IFTTT

Lunar Shadow Transit


This snapshot from deep space captures planet Earth on March 9. The shadow of its large moon is falling on the planet’s sunlit hemisphere. Tracking toward the east (left to right) across the ocean-covered world the moon shadow moved quickly in the direction of the planet’s rotation. Of course, denizens of Earth located close to the shadow track centerline saw this lunar shadow transit as a brief, total eclipse of the Sun. From a spacebased perspective between Earth and Sun, the view of this shadow transit was provided by the Deep Space Climate Observatory (DSCOVR) spacecraft’s Earth Polychromatic Imaging Camera (EPIC).

from NASA http://ift.tt/1SFAY5M
via IFTTT

Dark Sun over Ternate


A dark Sun hangs in the clearing sky over a volcanic planet in this morning sea and skycape. It was taken during this week’s total solar eclipse, a dramatic snapshot from along the narrow path of totality in the dark shadow of a New Moon. Earth’s Indonesian isle of Ternate, North Maluku lies in the foreground. The sky is still bright near the eastern horizon though, beyond the region’s flattened volcanic peaks and outside the Moon’s umbral shadow. In fact, near the equator the dark lunar umbra is rushing eastward across Earth’s surface at about 1,700 kilometers (1,100 miles) per hour. Shining through the thin clouds, around the Sun’s silhouette is the alluring glow of the solar corona, only easily seen during totality. An inspiring sight for eclipse watchers, this solar corona is the tenuous, hot outer atmosphere of the Sun.

from NASA http://ift.tt/1UVhhrg
via IFTTT

Edge On Galaxy NGC 5866


Why is this galaxy so thin? Many disk galaxies are actually just as thin as NGC 5866, pictured above, but are not seen edge-on from our vantage point. One galaxy that is situated edge-on is our own Milky Way Galaxy. Classified as a lenticular galaxy, NGC 5866 has numerous and complex dust lanes appearing dark and red, while many of the bright stars in the disk give it a more blue underlying hue. The blue disk of young stars can be seen extending past the dust in the extremely thin galactic plane, while the bulge in the disk center appears tinged more orange from the older and redder stars that likely exist there. Although similar in mass to our Milky Way Galaxy, light takes about 60,000 years to cross NGC 5866, about 30 percent less than light takes to cross our own Galaxy. In general, many disk galaxies are very thin because the gas that formed them collided with itself as it rotated about the gravitational center. Galaxy NGC 5866 lies about 50 million light years distant toward the constellation of the Dragon (Draco).

from NASA http://ift.tt/1LR5053
via IFTTT