Milky Way over the Pinnacles in Australia


What strange world is this? Earth. In the foreground of the featured image are the Pinnacles, unusual rock spires in Nambung National Park in Western Australia. Made of ancient sea shells (limestone), how these human-sized picturesque spires formed remains unknown. In the background, just past the end of the central Pinnacle, is a bright crescent Moon. The eerie glow around the Moon is mostly zodiacal light, sunlight reflected by dust grains orbiting between the planets in the Solar System. Arching across the top is the central band of our Milky Way Galaxy. Many famous stars and nebula are also visible in the background night sky. The featured 29-panel panorama was taken and composed last September after detailed planning that involved the Moon, the rock spires, and their corresponding shadows. Even so, the strong zodiacal light was a pleasant surprise.

from NASA http://ift.tt/1Sy9BuV
via IFTTT

Star Forming Region S106


Massive star IRS 4 is beginning to spread its wings. Born only about 100,000 years ago, material streaming out from this newborn star has formed the nebula dubbed Sharpless 2-106 Nebula (S106), featured here. A large disk of dust and gas orbiting Infrared Source 4 (IRS 4), visible in brown near the image center, gives the nebula an hourglass or butterfly shape. S106 gas near IRS 4 acts as an emission nebula as it emits light after being ionized, while dust far from IRS 4 reflects light from the central star and so acts as a reflection nebula. Detailed inspection of a recent infrared image of S106 reveal hundreds of low-mass brown dwarf stars lurking in the nebula’s gas. S106 spans about 2 light-years and lies about 2000 light-years away toward the constellation of the Swan (Cygnus).

from NASA http://ift.tt/1VjGAB9
via IFTTT

White Rock Fingers on Mars


What caused this unusual light rock formation on Mars? Intrigued by the possibility that they could be salt deposits left over as an ancient lakebed dried-up, detailed studies of these fingers now indicate a more mundane possibility: volcanic ash. Studying the exact color of the formation indicated the possible volcanic origin. The light material appears to have eroded away from surrounding area, indicating a very low-density substance. The stark contrast between the rocks and the surrounding sand is compounded by the unusual darkness of the sand. The featured picture was taken with the Thermal Emission Imaging System on the Mars Odyssey, the longest serving spacecraft currently orbiting Mars. The image spans about 10 kilometers inside a larger crater.

from NASA http://ift.tt/1KRtuuD
via IFTTT

A Heart Shaped Lenticular Cloud


Can a cloud love a mountain? Perhaps not, but on a Valentine’s Day like today, one might be prone to seeing heart-shaped symbols where they don’t actually exist. A fleeting pareidolia, the featured heart was really a lenticular cloud that appeared one morning last July above Mount Cook National Park in New Zealand. A companion video shows the lenticular cloud was mostly stationary in the sky but shifted and vibrated with surrounding winds. The cloud’s red color was caused by the Sun rising off the frame to the right. Lenticular clouds are somewhat rare but can form in air that passes over a mountain. Then, vertical eddies may form where rising air cools past the dew point causing water carried by the air to condense into droplets. Unfortunately, this amazing sight made the fascinated videographer late for breakfast.

from NASA http://ift.tt/1og4vHA
via IFTTT

Yutu on a Little Planet


Tracks lead to a small robot perched near the top of this bright little planet. Of course, the planet is really the Moon. The robot is the desk-sized Yutu rover, leaving its looming Chang’e 3 lander after a after a mid-December 2013 touch down in the northern Mare Imbrium. The little planet projection is a digitally warped and stitched mosaic of images from the lander’s terrain camera covering 360 by 180 degrees. Ultimately traveling over 100 meters, Yutu came to a halt in January 2014. The lander’s instruments are still working though, after more than two years on the lunar surface. Meanwhile, an interactive panoramic version of this little planet is available here.

from NASA http://ift.tt/2112D33
via IFTTT

LIGO Detects Gravitational Waves from Merging Black Holes


Gravitational radiation has been directly detected. The first-ever detection was made by both facilities of the Laser Interferometer Gravitational-Wave Observatory (LIGO) in Washington and Louisiana simultaneously last September. After numerous consistency checks, the resulting 5-sigma discovery was published today. The measured gravitational waves match those expected from two large black holes merging after a death spiral in a distant galaxy, with the resulting new black hole momentarily vibrating in a rapid ringdown. A phenomenon predicted by Einstein, the historic discovery confirms a cornerstone of humanity’s understanding of gravity and basic physics. It is also the most direct detection of black holes ever. The featured illustration depicts the two merging black holes with the signal strength of the two detectors over 0.3 seconds superimposed across the bottom. Expected future detections by Advanced LIGO and other gravitational wave detectors may not only confirm the spectacular nature of this measurement but hold tremendous promise of giving humanity a new way to see and explore our universe.

from NASA http://ift.tt/20Xw6La
via IFTTT

Galaxies in the River


Large galaxies grow by eating small ones. Even our own galaxy practices galactic cannibalism, absorbing small galaxies that get too close and are captured by the Milky Way’s gravity. In fact, the practice is common in the universe and illustrated by this striking pair of interacting galaxies from the banks of the southern constellation Eridanus, The River. Located over 50 million light years away, the large, distorted spiral NGC 1532 is seen locked in a gravitational struggle with dwarf galaxy NGC 1531 (right of center), a struggle the smaller galaxy will eventually lose. Seen edge-on, spiral NGC 1532 spans about 100,000 light-years. Nicely detailed in this sharp image, the NGC 1532/1531 pair is thought to be similar to the well-studied system of face-on spiral and small companion known as M51.

from NASA http://ift.tt/1QVr7Gd
via IFTTT

Light Pillars over Alaska


What’s happening behind those houses? Pictured here are not auroras but nearby light pillars, a nearby phenomenon that can appear as a distant one. In most places on Earth, a lucky viewer can see a Sun-pillar, a column of light appearing to extend up from the Sun caused by flat fluttering ice-crystals reflecting sunlight from the upper atmosphere. Usually these ice crystals evaporate before reaching the ground. During freezing temperatures, however, flat fluttering ice crystals may form near the ground in a form of light snow, sometimes known as a crystal fog. These ice crystals may then reflect ground lights in columns not unlike a Sun-pillar. The featured image was taken in Fort Wainwright near Fairbanks in central Alaska.

from NASA http://ift.tt/1nSIfTe
via IFTTT

Advanced LIGO: Gravitational Wave Detectors Upgraded


Accelerate a charge and you’ll get electromagnetic radiation: light. But accelerate any mass and you’ll get gravitational radiation. Light is seen all the time, but, so far, a confirmed direct detection of gravitational radiation has been elusive. When absorbed, gravitational waves create a tiny symmetric jiggle similar to squashing a rubber ball and letting go quickly. Separated detectors can be used to discern gravitational waves from everyday bumps. Powerful astronomical sources of gravitational radiation would coincidentally jiggle even detectors on opposite ends of the Earth. Pictured here are the four-kilometer-long arms of one such detector: the LIGO Hanford Observatory in Washington state, USA. Together with its sister interferometer in Louisiana, these gravitational wave detectors continue to be upgraded and are now more sensitive than ever.

from NASA http://ift.tt/1W2fAWX
via IFTTT

Five Planets at Castell de Burriac


February’s five planet line-up stretches across a clear sky in this predawn scene. A hilltop Castell de Burriac looms in the foreground, overlooking the town of Cabrera de Mar near Barcelona, Spain, planet Earth. The mosaicked, panoramic image looks south. It merges three different exposure times to record a bright Last Quarter Moon, planets, seaside city lights, and dark castle ruins. Seen on February 1st the Moon was near Mars on the sky. But this week early morning risers have watched it move on, passing near Saturn and finally Venus and Mercury, sliding along near the ecliptic toward the dawn, approaching the February 7 New Moon.

from NASA http://ift.tt/1PZChqj
via IFTTT