An Evening Sky Conjunction


Eight years ago, an evening sky held this lovely pairing of a young crescent Moon and brilliant Venus. Seen near the western horizon, the close conjunction and its wintry reflection were captured from Bolu, Turkey, planet Earth on February 19, 2007. In the 8 Earth years since this photograph was taken Venus has orbited the Sun almost exactly 13 times, so the Sun and Venus have now returned to the same the configuration in Earth’s sky. And since every 8 years the Moon also nearly repeats its phases for a given time of year, a very similar crescent Moon-Venus conjunction will again appear in planet Earth’s evening skies tonight. But the February 20, 2015 version of the conjunction will also include planet Mars. Much fainter Mars will wander even closer to Venus by the evening of February 21.

from NASA http://ift.tt/17yarSS
via IFTTT

Palomar 12


Palomar 12 was not born here. The stars of the globular cluster, first identified in the Palomar Sky Survey, are younger than those in other globular star clusters that roam the halo of our Milky Way Galaxy. Palomar 12’s position in our galaxy and measured motion suggest its home was once the Sagittarius Dwarf Elliptical Galaxy, a small satellite of the Milky Way. Disrupted by gravitational tides during close encounters the satellite galaxy has lost its stars to the larger Milky Way. Now part of the Milky Way’s halo, the tidal capture of Palomar 12 likely took place some 1.7 billion years ago. Seen behind spiky foreground stars in the sharp Hubble image, Palomar 12 spans nearly 60 light-years. Still much closer than the faint, fuzzy, background galaxies scattered throughout the field of view, it lies about 60,000 light-years away, toward the constellation Capricornus.

from NASA http://ift.tt/1AIGbm6
via IFTTT

Dark Craters and Bright Spots Revealed on Asteroid Ceres


What are those bright spots on asteroid Ceres? As the robotic spacecraft Dawn approaches the largest asteroid in the asteroid belt, the puzzle only deepens. Sharper new images taken last week and released yesterday indicate, as expected, that most of the surface of dwarf planet Ceres is dark and heavily cratered like our Moon and the planet Mercury. The new images do not clearly indicate, however, the nature of comparatively bright spots — although more of them are seen to exist. The enigmatic spots were first noticed on Texas-sized Ceres a few weeks ago during Dawn’s approach. The intriguing mystery might well be solved quickly as Dawn continues to advance toward Ceres, being on schedule to enter orbit on March 6.

from NASA http://ift.tt/19v3l3c
via IFTTT

Fibrils Flower on the Sun


When does the Sun look like a flower? In a specific color of red light emitted by hydrogen, as featured here, some regions of the solar chromosphere may resemble a rose. The color-inverted image was taken in 2014 October and shows active solar region 2177. The petals dominating the frame are actually magnetically confined tubes of hot plasma called fibrils, some of which extend longer the diameter of the Earth. In the central region many of these fibrils are seen end-on, while the surrounding regions are typically populated with curved fibrils. When seen over the Sun’s edge, these huge plasma tubes are called spicules, and when they occur in passive regions they are termed mottles. Sunspot region 2177 survived for several more days before the complex and tumultuous magnetic field poking through the Sun’s surface evolved yet again.

from NASA http://ift.tt/1FlCbJj
via IFTTT

M106: A Spiral Galaxy with a Strange Center


What’s happening at the center of spiral galaxy M106? A swirling disk of stars and gas, M106‘s appearance is dominated by blue spiral arms and red dust lanes near the nucleus, as shown in the featured image. The core of M106 glows brightly in radio waves and X-rays where twin jets have been found running the length of the galaxy. An unusual central glow makes M106 one of the closest examples of the Seyfert class of galaxies, where vast amounts of glowing gas are thought to be falling into a central massive black hole. M106, also designated NGC 4258, is a relatively close 23.5 million light years away, spans 60 thousand light years across, and can be seen with a small telescope towards the constellation of the Hunting Dogs (Canes Venatici).

from NASA http://ift.tt/17fSLLF
via IFTTT

Two Hours Before Neptune


Two hours before closest approach to Neptune in 1989, the Voyager 2 robot spacecraft snapped this picture. Clearly visible for the first time were long light-colored cirrus-type clouds floating high in Neptune’s atmosphere. Shadows of these clouds can even be seen on lower cloud decks. Most of Neptune’s atmosphere is made of hydrogen and helium, which is invisible. Neptune‘s blue color therefore comes from smaller amounts of atmospheric methane, which preferentially absorbs red light. Neptune has the fastest winds in the Solar System, with gusts reaching 2000 kilometers per hour. Speculation holds that diamonds may be created in the dense hot conditions that exist under the cloud tops of Uranus and Neptune. Twenty-six years later, NASA‘s New Horizons is poised to be the first spacecraft to zoom past Pluto this July.

from NASA http://ift.tt/1A9qmkJ
via IFTTT

Solar System Portrait


On another Valentine’s Day 25 years ago, cruising four billion miles from the Sun, the Voyager 1 spacecraft looked back one last time to make this first ever Solar System family portrait. The complete portrait is a 60 frame mosaic made from a vantage point 32 degrees above the ecliptic plane. In it, Voyager’s wide angle camera frames sweep through the inner Solar System at the left, linking up with gas giant Neptune, the Solar System’s outermost planet, at the far right. Positions for Venus, Earth, Jupiter, Saturn, Uranus, and Neptune are indicated by letters, while the Sun is the bright spot near the center of the circle of frames. The inset frames for each of the planets are from Voyager’s narrow field camera. Unseen in the portrait are Mercury, too close to the Sun to be detected, and Mars, unfortunately hidden by sunlight scattered in the camera’s optical system. Closer to the Sun than Neptune at the time, small, faint Pluto’s position was not covered.

from NASA http://ift.tt/1DQ6S7v
via IFTTT