Fibrils Flower on the Sun


When does the Sun look like a flower? In a specific color of red light emitted by hydrogen, as featured here, some regions of the solar chromosphere may resemble a rose. The color-inverted image was taken in 2014 October and shows active solar region 2177. The petals dominating the frame are actually magnetically confined tubes of hot plasma called fibrils, some of which extend longer the diameter of the Earth. In the central region many of these fibrils are seen end-on, while the surrounding regions are typically populated with curved fibrils. When seen over the Sun’s edge, these huge plasma tubes are called spicules, and when they occur in passive regions they are termed mottles. Sunspot region 2177 survived for several more days before the complex and tumultuous magnetic field poking through the Sun’s surface evolved yet again.

from NASA http://ift.tt/1FlCbJj
via IFTTT

M106: A Spiral Galaxy with a Strange Center


What’s happening at the center of spiral galaxy M106? A swirling disk of stars and gas, M106‘s appearance is dominated by blue spiral arms and red dust lanes near the nucleus, as shown in the featured image. The core of M106 glows brightly in radio waves and X-rays where twin jets have been found running the length of the galaxy. An unusual central glow makes M106 one of the closest examples of the Seyfert class of galaxies, where vast amounts of glowing gas are thought to be falling into a central massive black hole. M106, also designated NGC 4258, is a relatively close 23.5 million light years away, spans 60 thousand light years across, and can be seen with a small telescope towards the constellation of the Hunting Dogs (Canes Venatici).

from NASA http://ift.tt/17fSLLF
via IFTTT

Two Hours Before Neptune


Two hours before closest approach to Neptune in 1989, the Voyager 2 robot spacecraft snapped this picture. Clearly visible for the first time were long light-colored cirrus-type clouds floating high in Neptune’s atmosphere. Shadows of these clouds can even be seen on lower cloud decks. Most of Neptune’s atmosphere is made of hydrogen and helium, which is invisible. Neptune‘s blue color therefore comes from smaller amounts of atmospheric methane, which preferentially absorbs red light. Neptune has the fastest winds in the Solar System, with gusts reaching 2000 kilometers per hour. Speculation holds that diamonds may be created in the dense hot conditions that exist under the cloud tops of Uranus and Neptune. Twenty-six years later, NASA‘s New Horizons is poised to be the first spacecraft to zoom past Pluto this July.

from NASA http://ift.tt/1A9qmkJ
via IFTTT

Solar System Portrait


On another Valentine’s Day 25 years ago, cruising four billion miles from the Sun, the Voyager 1 spacecraft looked back one last time to make this first ever Solar System family portrait. The complete portrait is a 60 frame mosaic made from a vantage point 32 degrees above the ecliptic plane. In it, Voyager’s wide angle camera frames sweep through the inner Solar System at the left, linking up with gas giant Neptune, the Solar System’s outermost planet, at the far right. Positions for Venus, Earth, Jupiter, Saturn, Uranus, and Neptune are indicated by letters, while the Sun is the bright spot near the center of the circle of frames. The inset frames for each of the planets are from Voyager’s narrow field camera. Unseen in the portrait are Mercury, too close to the Sun to be detected, and Mars, unfortunately hidden by sunlight scattered in the camera’s optical system. Closer to the Sun than Neptune at the time, small, faint Pluto’s position was not covered.

from NASA http://ift.tt/1DQ6S7v
via IFTTT

Aurora on Ice


Not from a snowglobe, this expansive fisheye view of ice and sky was captured on February 1, from Jökulsárlón Beach, southeast Iceland, planet Earth. Chunks of glacial ice on the black sand beach glisten in the light of a nearly full moon surrounded by a shining halo. The 22 degree lunar halo itself is created by ice crystals in high, thin clouds refracting the moonlight. Despite the bright moonlight, curtains of aurora still dance through the surreal scene. In early February, their activity was triggered by Earth’s restless magnetosphere and the energetic wind from a coronal hole near the Sun’s south pole. Bright Jupiter, also near opposition, is visible at the left, beyond the icy lunar halo.

from NASA http://ift.tt/1B4UFfv
via IFTTT

Exploring the Antennae


Some 60 million light-years away in the southerly constellation Corvus, two large galaxies are colliding. The stars in the two galaxies, cataloged as NGC 4038 and NGC 4039, very rarely collide in the course of the ponderous cataclysm, lasting hundreds of millions of years. But their large clouds of molecular gas and dust often do, triggering furious episodes of star formation near the center of the cosmic wreckage. Spanning about 500 thousand light-years, this stunning composited view also reveals new star clusters and matter flung far from the scene of the accident by gravitational tidal forces. The remarkable collaborative image is a mosaic constructed using data from small and large ground-based telescopes to bring out large-scale and faint tidal streams, composited with the bright cores imaged in extreme detail by the Hubble Space Telescope. Of course, the suggestive visual appearance of the extended arcing structures gives the galaxy pair its popular name – The Antennae.

from NASA http://ift.tt/1F0oGhN
via IFTTT

M100: A Grand Design Spiral Galaxy


Majestic on a truly cosmic scale, M100 is appropriately known as a grand design spiral galaxy. It is a large galaxy of over 100 billion stars with well-defined spiral arms that is similar to our own Milky Way Galaxy. One of the brightest members of the Virgo Cluster of galaxies, M100 (alias NGC 4321) is 56 million light-years distant toward the constellation of Berenice’s Hair (Coma Berenices). This Hubble Space Telescope image of M100 was made in 2009 and reveals bright blue star clusters and intricate winding dust lanes which are hallmarks of this class of galaxies. Studies of variable stars in M100 have played an important role in determining the size and age of the Universe. If you know exactly where to look, you can find a small spot that is a light echo from a bright supernova that was recorded a few years before the image was taken.

from NASA http://ift.tt/1vixXcG
via IFTTT

An Extremely Long Filament on the Sun


Yesterday, the Sun exhibited one of the longest filaments ever recorded. It may still be there today. Visible as the dark streak just below the center in the featured image, the enormous filament extended across the face of the Sun a distance even longer than the Sun’s radius — over 700,000 kilometers. A filament is actually hot gas held aloft by the Sun’s magnetic field, so that viewed from the side it would appear as a raised prominence. The featured image shows the filament in light emitted by hydrogen and therefore highlights the Sun’s chromosphere. Sun-following telescopes including NASA’s Solar Dynamics Observatory (SDO) are tracking this unusual feature, with SDO yesterday recording a spiraling magnetic field engulfing it. Since filaments typically last only from hours to days, parts of this one may collapse or erupt at any time, either returning hot plasma back to the Sun or expelling it into the Solar System. Is the filament still there? You can check by clicking on SDO’s current solar image.

from NASA http://ift.tt/1E0Wes9
via IFTTT

Layered Rocks near Mount Sharp on Mars


What caused these Martian rocks to be layered? The leading hypothesis is an ancient Martian lake that kept evaporating and refilling over 10 million years — but has now remained dry and empty of water for billions of years. The featured image, taken last November by the robotic Curiosity rover, shows one-meter wide Whale Rock which is part of the Pahrump Hills outcrop at the base of Mount Sharp. Also evident in the image is cross-bedding — rock with angled layers — which were likely facilitated by waves of sand. Curiosity continues to find many layered rocks like this as it continues to roll around and up 5.5-km high Mount Sharp.

from NASA http://ift.tt/1C9JGz1
via IFTTT

Carina Nebula Dust Pillar


This cosmic pillar of gas and dust is nearly two light-years wide. The structure lies within one of our galaxy’s largest star forming regions, the Carina Nebula, shining in southern skies at a distance of about 7,500 light-years. The pillar’s convoluted outlines are shaped by the winds and radiation of Carina’s young, hot, massive stars. But the interior of the cosmic pillar itself is home to stars in the process of formation. In fact, a penetrating infrared view shows the pillar is dominated by two, narrow, energetic jets blasting outward from a still hidden infant star. The above featured visible light image was made in 2009 using the Hubble Space Telescope’s Wide Field Camera 3.

from NASA http://ift.tt/1D9Mb5O
via IFTTT